218 research outputs found

    Long-term variability of solar irradiance and its implications for photovoltaic power in West Africa

    Get PDF
    This paper addresses long-term changes in solar irradiance for West Africa (3° N to 20° N and 20° W to 16° E) and its implications for photovoltaic power systems. Here we use satellite irradiance (Surface Solar Radiation Data Set-Heliosat, Edition 2.1, SARAH-2.1) to derive photovoltaic yields. Based on 35 years of data (1983–2017) the temporal and regional variability as well as long-term trends of global and direct horizontal irradiance are analyzed. Furthermore, at four locations a detailed time series analysis is undertaken. The dry and the wet season are considered separately

    Atmospheric rivers and associated precipitation patterns during the ACLOUD/PASCAL campaigns near Svalbard (May-June 2017): case studies using observations, reanalyses, and a regional climate model

    Get PDF
    Recently, a significant increase in the atmospheric moisture content has been documented over the Arctic, where both local contributions and poleward moisture transport from lower latitudes can play a role. This study focuses on the anomalous moisture transport events confined to long and narrow corridors, known as atmospheric rivers (ARs), which are expected to have a strong influence on Arctic moisture amounts, precipitation, and the energy budget. During two concerted intensive measurement campaigns – Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary layer, Sea ice, Cloud and AerosoL (PASCAL) – that took place at and near Svalbard, three high-water-vapour-transport events were identified as ARs, based on two tracking algorithms: the 30 May event, the 6 June event, and the 9 June 2017 event. We explore the temporal and spatial evolution of the events identified as ARs and the associated precipitation patterns in detail using measurements from the French (Polar Institute Paul Emile Victor) and German (Alfred Wegener Institute for Polar and Marine Research) Arctic Research Base (AWIPEV) in Ny-Ålesund, satellite-borne measurements, several reanalysis products (the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA) Interim (ERA-Interim); the ERA5 reanalysis; the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2); the Climate Forecast System version 2 (CFSv2); and the Japanese 55-Year Reanalysis (JRA-55)), and the HIRHAM regional climate model version 5 (HIRHAM5). Results show that the tracking algorithms detected the events differently, which is partly due to differences in the spatial and temporal resolution as well as differences in the criteria used in the tracking algorithms. The first event extended from western Siberia to Svalbard, caused mixed-phase precipitation, and was associated with a retreat of the sea-ice edge. The second event, 1 week later, had a similar trajectory, and most precipitation occurred as rain, although mixed-phase precipitation or only snowfall occurred in some areas, mainly over the coast of north-eastern Greenland and the north-east of Iceland, and no differences were noted in the sea-ice edge. The third event showed a different pathway extending from the north-eastern Atlantic towards Greenland before turning south-eastward and reaching Svalbard. This last AR caused high precipitation amounts on the east coast of Greenland in the form of rain and snow and showed no precipitation in the Svalbard region. The vertical profiles of specific humidity show layers of enhanced moisture that were concurrent with dry layers during the first two events and that were not captured by all of the reanalysis datasets, whereas the HIRHAM5 model misrepresented humidity at all vertical levels. There was an increase in wind speed with height during the first and last events, whereas there were no major changes in the wind speed during the second event. The accuracy of the representation of wind speed by the reanalyses and the model depended on the event. The objective of this paper was to build knowledge from detailed AR case studies, with the purpose of performing long-term analysis. Thus, we adapted a regional AR detection algorithm to the Arctic and analysed how well it identified ARs, we used different datasets (observational, reanalyses, and model) and identified the most suitable dataset, and we analysed the evolution of the ARs and their impacts in terms of precipitation. This study shows the importance of the Atlantic and Siberian pathways of ARs during spring and beginning of summer in the Arctic; the significance of the AR-associated strong heat increase, moisture increase, and precipitation phase transition; and the requirement for high-spatio-temporal-resolution datasets when studying these intense short-duration events

    Atmospheric Rivers over the Arctic with the ICON model

    Get PDF
    The Arctic climate changes faster than the ones of other regions, but the relative role of the individual feedback mechanisms contributing to Arctic amplification is still unclear. Atmospheric Rivers (ARs) are narrow and transient river-style moisture flows arriving from the sub-polar regions. The integrated water vapour transport associated with ARs can explain up to 70% of the precipitation variance north of 70N. However, there are still uncertainties regarding the specific role and the impact of ARs on the Arctic climate variability. For the first time, the high-resolution ICON modelling framework is used over the Arctic region (from 13 km down to ca. 2 km) to investigate processes related with anomalous moisture transport into the Arctic. Based on a case study for Svalbard, the representation of the atmospheric circulation and the spatio-temporal structure of water vapour, temperature, and precipitation and snowfall within the limited-area mode (LAM) of the ICON model is assessed. The impact on the surface energy budget will be calculated

    Assessment of Sampling Effects on Various Satellite-Derived Integrated Water Vapor Datasets Using GPS Measurements in Germany as Reference

    Get PDF
    Passive imagers on polar-orbiting satellites provide long-term, accurate integrated water vapor (IWV) data sets. However, these climatologies are affected by sampling biases. In Germany, a dense Global Navigation Satellite System network provides accurate IWV measurements not limited by weather conditions and with high temporal resolution. Therefore, they serve as a reference to assess the quality and sampling issues of IWV products from multiple satellite instruments that show different orbital and instrument characteristics. A direct pairwise comparison between one year of IWV data from GPS and satellite instruments reveals overall biases (in kg/m 2 ) of 1.77, 1.36, 1.11, and −0.31 for IASI, MIRS, MODIS, and MODIS-FUB, respectively. Computed monthly means show similar behaviors. No significant impact of averaging time and the low temporal sampling on aggregated satellite IWV data is found, mostly related to the noisy weather conditions in the German domain. In combination with SEVIRI cloud coverage, a change of shape of IWV frequency distributions towards a bi-modal distribution and loss of high IWV values are observed when limiting cases to daytime and clear sky. Overall, sampling affects mean IWV values only marginally, which are rather dominated by the overall retrieval bias, but can lead to significant changes in IWV frequency distributions

    A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere.

    Get PDF
    Abstract The implementation of an operational network of microwave radiometers is presently hampered by the cost and complexity of the available instruments. For this reason, the definition and design of a low-cost microwave radiometer suitable for automatic, high-quality observations of liquid water path (LWP) were one objective of the BALTEX cloud liquid water network: CLIWA-NET. In the course of the project, it turned out that a full profiling radiometer with 14 channels can be produced at only about 30% higher cost than a classical dual-channel IWV/LWP radiometer. The profiling capability allows simultaneous observations of LWP and the lower tropospheric (0-5 km) humidity and temperature profiles with a temporal resolution of less than 10 s and a vertical resolution from 100 m to 1 km in the planetary boundary layer depending on height and atmospheric conditions. The latter is possible due to an elevation scan capability and by the implementation of a new filter bank design. The radiometer has several additional sensors (temperature, humidity, pressure, rain detector and GPS) which guarantee, together with a flexible software package, the operational performance of the system with maintenance intervals of about every 3 months. The performance of the first prototype has been verified during a 3-week campaign at Cabauw, The Netherlands.

    Long-Term Observations and High-Resolution Modeling of Midlatitude Nocturnal Boundary Layer Processes Connected to Low-Level Jets

    Get PDF
    Low-level-jet (LLJ) periods are investigated by exploiting a long-termrecord of ground-based remote sensing Doppler wind lidar measurements supported by tower observations and surface flux measurements at the Julich Observatory for Cloud Evolution (JOYCE), a midlatitude site in western Germany. LLJs were found 13% of the time during continuous observations over more than 4 yr. The climatological behavior of the LLJs shows a prevailing nighttime appearance of the jets, with a median height of 375 m and a median wind speed of 8.8 ms(-1) at the jet nose. Significant turbulence below the jet nose only occurs for high bulk wind shear, which is an important parameter for describing the turbulent characteristics of the jets. The numerous LLJs (16% of all jets) in the range of wind-turbine rotor heights below 200 m demonstrate the importance of LLJs and the associated intermittent turbulence for wind-energy applications. Also, a decrease in surface fluxes and an accumulation of carbon dioxide are observed if LLJs are present. A comprehensive analysis of an LLJ case shows the influence of the surrounding topography, dominated by an open pit mine and a 200-m-high hill, on the wind observed at JOYCE. High-resolution large-eddy simulations that complement the observations show that the spatial distribution of the wind field exhibits variations connected with the orographic flow depending on the wind direction, causing high variability in the long-term measurements of the vertical velocity.Peer reviewe

    Atmospheric temperature, water vapour and liquid water path from two microwave radiometers during MOSAiC

    Get PDF
    The microwave radiometers HATPRO (Humidity and Temperature Profiler) and MiRAC-P (Microwave Radiometer for Arctic Clouds - Passive) continuously measured radiation emitted from the atmosphere throughout the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) expedition on board the research vessel Polarstern. From the measured brightness temperatures, we have retrieved atmospheric variables using statistical methods in a temporal resolution of 1 s covering October 2019 to October 2020. The integrated water vapour (IWV) is derived individually from both radiometers. In addition, we present the liquid water path (LWP), temperature and absolute humidity profiles from HATPRO. To prove the quality and to estimate uncertainty, the data sets are compared to radiosonde measurements from Polarstern. The comparison shows an extremely good agreement for IWV, with standard deviations of 0.08–0.19 kg m−2 (0.39–1.47 kg m−2) in dry (moist) situations. The derived profiles of temperature and humidity denote uncertainties of 0.7–1.8 K and 0.6–0.45 gm−3 in 0–2 km altitude

    EUREC4A's Maria S. Merian ship-based cloud and micro rain radar observations of clouds and precipitation

    Get PDF
    As part of the EUREC4A field campaign, the research vessel Maria S. Merian probed an oceanic region between 6° N and 13.8° N and 51° W to 60° W for approximately 32 days. Trade wind cumulus clouds were sampled in the trade-wind alley region east of Barbados as well as in the transition region between the trades and the intertropical convergence zone, where the ship crossed some mesoscale oceanic eddies. We collected continuous observations of cloud and precipitation profiles at unprecedented vertical resolution (7–10 m in the first 3000 m) and high temporal resolution (1–3 s) using a W-band radar and micro-rain radar (MRR-PRO), installed on an active stabilization platform to reduce the impact of ship motions on the observations. The paper describes the ship motion correction algorithm applied to the Doppler observations to extract corrected hydrometeors vertical velocities and the algorithm created to filter interference patterns in the MRR-PRO observations. Radar reflectivity, mean Doppler velocity, spectral width and skewness for W-band and attenuated reflectivity, mean Doppler velocity and rain rate for MRR-PRO are shown for a case study to demonstrate the potential of the high resolution adopted. As non-standard analysis, we also retrieved and provided liquid water path (LWP) from the 89 GHz passive channel available on the W-band radar system. All datasets and hourly and daily quicklooks are publically available. Data can be accessed and basic variables can be plotted online via the intake catalog of the online book "How to EUREC4A".Postprint (author's final draft

    Introduction of the Transregional Collaborative Research Center TR 172: Arctic Amplification

    Get PDF
    A new German research consortium is investigating the causes and effects of the rapid rise of near-surface air temperatures in the Artic. Within the last 25 years a remarkable increase of the Arctic near-surface air temperature exceeding the global warming by a factor of two to three has been observed. The phenomenon is commonly referred to as Arctic Amplification. The warming results in rather drastic changes of a variety of climate parameters. For example, the Arctic sea ice has declined significantly. This ice retreat has been well identified by satellite measurements. However, coupled regional and global climate models still fail to reproduce it adequately; they tend to systematically underestimate the observed sea ice decline. This model observation difference implies that the underlying physical processes and feedback mechanisms are not appropriately represented in Arctic climate models. Thus, the predictions of these models are also likely to be inadequate. It is mandatory to identify the origin of this disagreement.Ein neu geschaffenes deutsches Forschungskonsortium untersucht die Ursachen und Effekte des rapiden Anstiegs der bodennahen Lufttemperatur in der Arktis. Innerhalb der letzten 25 Jahre wurde ein bemerkenswerter Anstieg der Bodenlufttemperatur in der Arktis beobachtet, welcher die globale Erwärmung um den Faktor 2 bis 3 übersteigt. Dieses Phänomen wird als arktische Verstärkung bezeichnet. Diese Erwärmung resultiert vielmehr in einer drastischen Änderung einer Vielzahl von Klimarparametern. Beispielsweise ist das arktische Meereis deutlich zurückgegangen. Dieser Eisrückgang wurde durch Satellitenbeobachtungen gut beobachtet. Dagegen haben regionale und globale Klimamodelle immer noch Probleme, den Rückgang entsprechend zu reproduzieren. Sie tendieren dazu, den Meereisrückgang systematisch zu unterschätzen. Die Unterschiede zwischen Modell und Beobachtungen legen nahe, dass die grundlegenden physikalischen Prozesse und Rückkopplungsmechanismen nicht entsprechend in arktischen Klimamodellen repräsentiert werden. Somit sind wahrscheinlich auch die Vorhersagen der Modelle unzureichend. Es ist notwendig, den Ursprung dieser Unstimmigkeit zu identifizieren
    • …
    corecore